首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9403篇
  免费   813篇
  国内免费   1162篇
  2024年   11篇
  2023年   150篇
  2022年   217篇
  2021年   566篇
  2020年   437篇
  2019年   519篇
  2018年   467篇
  2017年   292篇
  2016年   405篇
  2015年   638篇
  2014年   756篇
  2013年   751篇
  2012年   944篇
  2011年   864篇
  2010年   480篇
  2009年   477篇
  2008年   561篇
  2007年   439篇
  2006年   394篇
  2005年   328篇
  2004年   264篇
  2003年   211篇
  2002年   155篇
  2001年   129篇
  2000年   109篇
  1999年   143篇
  1998年   86篇
  1997年   94篇
  1996年   62篇
  1995年   56篇
  1994年   50篇
  1993年   45篇
  1992年   50篇
  1991年   41篇
  1990年   41篇
  1989年   30篇
  1988年   24篇
  1987年   19篇
  1986年   27篇
  1985年   20篇
  1984年   9篇
  1983年   10篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Liu Q  Guan L  Huang B  Li W  Su Q  Yu M  Xu X  Luo T  Lin S  Sun X  Chen M  Chen X 《Cell biology international》2011,35(6):631-638
Adult peripheral blood-derived cells are able to differentiate into a variety of cell types, including nerve cells, liver-like cells and epithelial cells. However, their differentiation into retina-like cells is controversial. In the present study, transdifferentiation potential of human adult peripheral blood mononuclear cells into retina-like cells and integration into the retina of mice were investigated. Freshly isolated adult peripheral blood mononuclear cells were divided into two groups: cells in group I were cultured in neural stem cell medium, and cells in group II were exposed to conditioned medium from rat retinal tissue culture. After 5 days, several distinct cell morphologies were observed, including standard mononuclear, neurons with one or two axons and elongated glial-like cells. Immunohistochemical analysis of neural stem cell, neuron and retina cell markers demonstrated that cells in both groups were nestin-, MAP2 (microtubule-associated protein)- and GFAP (glial fibrillary acidic protein)-positive. Flow cytometry results suggested a significant increase in nestin-, MAP2- and CD16-positive cells in group I and nestin-, GFAP-, MAP2-, vimentin- and rhodopsin-positive cells in group II. To determine survival, migration and integration in vivo, cell suspensions (containing group I or group II cells) were injected into the vitreous or the peritoneum. Tissue specimens were obtained and immunostained 4 weeks after transplantation. We found that cells delivered by intravitreal injection integrated into the retina. Labelled cells were not detected in the retina of mice receiving differentiated cells by intraperitoneal injection, but cells (groups I and II) were detected in the liver and spleen. Our findings revealed that human adult peripheral blood mononuclear cells could be induced to transdifferentiate into neural precursor cells and retinal progenitor cells in vitro, and the differentiated peripheral blood mononuclear cells can migrate and integrate into the retina in vivo.  相似文献   
992.
Fatty acid synthase (FAS) in animal tissues consists of two identical monomers and is known to be a complex multi-functional enzyme that plays an important role in energy homeostasis. However, there are few reports of studies focused on the relationship between FAS and virus infection in invertebrates. In the present study, we cloned the FAS gene from an economically important invertebrate, the Pacific white shrimp Litopenaeus vannamei. The full-length FAS cDNA is 8268 bp, including a 5'-terminal untranslated region of 137 bp, a 3'-terminal untranslated region of 601 bp and an open reading frame of 7530 bp. FAS cDNA encodes a polypeptide of 2509 amino acid residues that contains a typical β-ketoacyl synthase (KS) domain at the N-terminus, next to a malonyl/acetyltransferase (MAT) domain, a dehydrase domain, an enoyl reductase domain, a ketoacyl reductase domain, a phosphopantetheine attachment site domain and a thioesterase domain at the C-terminus. Quantitative real-time RT-PCR revealed the up-regulated expression of FAS in L. vannamei hepatopancreas and muscle after white spot syndrome virus (WSSV) infection. The expression of FAS in muscle was 13.03-fold greater than that in the control (p<0.05) and 2.93-fold greater in hepatopancreas (p>0.05). Meanwhile, expression of the fatty acid-binding protein (FABP), another important factor in lipid metabolism, was increased in muscle to 19.20-fold greater than that in the control (p<0.05) but only 0.76-fold in hepatopancreas (p>0.05). These results implied that WSSV infected body surface tissues, but there was very little infection of internal organs. We suggest that the increase of FAS expression is induced in WSSV-infected shrimps, and the virus changes the lipid metabolism of the host, which directly affects virus assembly or defense against virus infection.  相似文献   
993.
Jiang Q  Wang Y  Li T  Shi K  Li Z  Ma Y  Li F  Luo H  Yang Y  Xu C 《Molecular biology of the cell》2011,22(8):1167-1180
Autophagy can protect cells while also contributing to cell damage, but the precise interplay between apoptosis and autophagy and the contribution of autophagy to cell death are still not clear. Previous studies have shown that supranutritional doses of sodium selenite promote apoptosis in human leukemia NB4 cells. Here, we report that selenite treatment triggers opposite patterns of autophagy in the NB4, HL60, and Jurkat leukemia cell lines during apoptosis and provide evidence that the suppressive effect of selenite on autophagy in NB4 cells is due to the decreased expression of the chaperone protein Hsp90 (heat shock protein 90), suggesting a novel regulatory function of Hsp90 in apoptosis and autophagy. Excessive or insufficient expression indicates that Hsp90 protects NB4 cells from selenite-induced apoptosis, and selenite-induced decreases in the expression of Hsp90, especially in NB4 cells, inhibit the activities of the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear translocation and inactivation of NF-κB and the subsequent weak binding of the becn1 promoter, which facilitates the transition from autophagy to apoptosis. Taken together, our observations provide novel insights into the mechanisms underlying the balance between apoptosis and autophagy, and we also identified Hsp90-NF-κB-Beclin1 as a potential biological pathway for signaling the switch from autophagy to apoptosis in selenite-treated NB4 cells.  相似文献   
994.
995.
Apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Phagosome maturation requires phosphatidylinositol 3-phosphate [PtdIns(3)P], yet how PtdIns(3)P triggers phagosome maturation remains largely unknown. Through a genomewide PtdIns(3)P effector screen in the nematode Caenorhabditis elegans , we identified LST-4/SNX9, SNX-1, and SNX-6, three BAR domain-containing sorting nexins, that act in two parallel pathways to drive PtdIns(3)P-mediated degradation of apoptotic cells. We found that these proteins were enriched on phagosomal surfaces through association with PtdIns(3)P and through specific protein-protein interaction, and they promoted the fusion of early endosomes and lysosomes to phagosomes, events essential for phagosome maturation. Specifically, LST-4 interacts with DYN-1 (dynamin), an essential phagosome maturation initiator, to strengthen DYN-1's association to phagosomal surfaces, and facilitates the maintenance of the RAB-7 GTPase on phagosomal surfaces. Furthermore, both LST-4 and SNX-1 promote the extension of phagosomal tubules to facilitate the docking and fusion of intracellular vesicles. Our findings identify the critical and differential functions of two groups of sorting nexins in phagosome maturation and reveal a signaling cascade initiated by phagocytic receptor CED-1, mediated by PtdIns(3)P, and executed through these sorting nexins to degrade apoptotic cells.  相似文献   
996.
Aims: To improve a commercially used strain for gellan production by exogenous Vitreoscilla haemoglobin (VHb). Methods and Results: VHb gene was expressed in Sphingomonas elodea under the control of constitutive bla promoter. Biochemical activity of expressed VHb was confirmed by CO‐difference spectra analysis that exhibited a characteristic absorption maximum at 419 nm. During cultivation, not only enhanced cell growth was detected, but also 20% improvement in gellan production was observed after 48 h of incubation, with a maximum yield of 16·82 g l?1. Moreover, maximum sucrose conversion efficiency (g gellan per g sucrose) was 57·8, 20% higher than that of the parental strain. We further examined the polysaccharide production of VHb‐expressing strain at different aeration levels in Erlenmeyer flasks. Again, in all cases, a significant enhancement of gellan production was observed, and the enhancement was more significant under oxygen‐limiting conditions (up to 26·8%). Conclusions: VHb exhibited positive effect on cell growth and gellan yield of Selodea, especially under hypoxic conditions. Significance and Impact of the Study: This is the first application of VHb as an effective metabolic engineering strategy in Selodea to regulate cell growth and optimize gellan yield.  相似文献   
997.
Ribosomal proteins (RPs), structural components of the ribosome involved in protein synthesis, are of significant importance in all organisms. Previous studies have suggested that some RPs may have other functions in addition to assembly of the ribosome. The small ribosomal subunits RPS7, has been reported to modulate the mdm2-p53 interaction. To further investigate the biological functions of RPS7, we used morpholino antisense oligonucleotides (MO) to specifically knockdown RPS7 in zebrafish. In RPS7-deficient embryos, p53 was activated, and its downstream target genes and biological events were induced, including apoptosis and cell cycle arrest. Hematopoiesis was also impaired seriously in RPS7-deficient embryos, which was confirmed by the hemoglobin O-dianisidine staining of blood cells, and the expression of scl, gata1 and α-E1 globin were abnormal. The matrix metalloproteinase (mmp) family genes were also activated in RPS7 morphants, indicating that improper cell migration might also cause development defects. Furthermore, simultaneously knockdown of the p53 protein by co-injecting a p53 MO could partially reverse the abnormal phenotype in the morphants. These results strengthen the hypothesis that specific ribosomal proteins regulate p53 and that their deficiency affects hematopoiesis. Moreover, our data implicate that RPS7 is a regulator of matrix metalloproteinase (mmp) family in zebrafish system. These specific functions of RPS7 may provide helpful clues to study the roles of RPs in human disease.  相似文献   
998.
ClC-3 Cl channel plays an important role in cell volume regulation and cell cycle. In vascular smooth muscle cells, we have found that ClC-3 was involved in ET-1 induced cell proliferation. The present study was designed to further investigate the role of ClC-3 Cl channel in H2O2-induced apoptosis and its underlying mechanisms in rat basilar arterial smooth muscle cell (BASMCs). By using ClC-3 cDNA and small interference RNA (siRNA) transfection strategy, it was found that overexpression of ClC-3 significantly decreased the apoptotic rate of H2O2-treated BASMCs and increased the cell viability, whereas silencing of ClC-3 with siRNA produced opposite effects and increased the apoptotic rate. ClC-3 overexpression decreased cytochrome C release and caspase-3 activation, and increased both the stability of mitochondrial membrane potential and the ratio of Bcl-2/Bax, whereas silencing of ClC-3 produced opposite effect. Furthermore, we demonstrated that overexpression of ClC-3 attenuated, whereas silencing of ClC-3 facilitated, the degradation of LaminA, one of the structural matrix proteins, in BASMCs. Our data suggest that ClC-3 Cl channel can modulate H2O2-induced apoptosis in BASMCs via the intrinsic, mitochondrial pathway.  相似文献   
999.
High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques. Therefore, here, we describe a new method, miRD, which is constructed using two feature selection strategies based on support vector machines (SVMs) and boosting method. It is a high-efficiency tool for novel pre-microRNA prediction with accuracy up to 94.0% among different species. AVAILABILITY: miRD is implemented in PHP/PERL+MySQL+R and can be freely accessed at http://mcg.ustc.edu.cn/rpg/mird/mird.php.  相似文献   
1000.
In multicellular organisms, each cell contains the same DNA sequence, but with different epigenetic information that determines the cell specificity. Semi-conservative DNA replication faithfully copies the parental nucleotide sequence into two DNA daughter strands during each cell cycle. At the same time, epigenetic marks such as DNA methylation and histone modifications are either precisely transmitted to the daughter cells or dynamically changed during S-phase. Recent studies indicate that in each cell cycle, many DNA replication related proteins are involved in not only genomic but also epigenomic replication. Histone modification proteins, chromatin remodeling proteins, histone variants, and RNAs participate in the epigenomic replication during S-phase. As a consequence, epigenome replication is closely linked with DNA replication during S-phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号